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We demonstrate theoretically and experimentally that the unstable delayed feedback controller is an efficient
tool for stabilizing torsion-free unstable periodic orbits in nonautonomous chaotic systems. To improve the
global control performance we introduce a two-step control algorithm. The problem of a linear stability of the
system under delayed feedback control is treated analytically. Theoretical results are confirmed by electronic
circuit experiments for a forced double-well oscillator.
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I. INTRODUCTION

Control of complex and chaotic behavior has been one of
the most rapidly developing topics in applied nonlinear sci-
ence for more than a decade �1–4�. Many methods have been
devised for stabilizing unstable periodic orbits �UPOs� em-
bedded in a chaotic attractor. The delayed feedback control
�DFC� method introduced by one of us �K.P.� �5� and later
extended by different authors �6–9� has become very popu-
lar. The method is noninvasive in the sense that the control
signal vanishes when the stabilization of the target orbit is
attained. Although the method can be relatively simply
implemented in experiments, its theory is rather difficult,
since the time-delay dynamics takes place in infinite-
dimensional phase spaces. Successful implementations of the
method include quite diverse experimental systems from dif-
ferent fields of science �cf. �10� for a review�. However, a
topological limitation has been pointed out, which means the
inability to stabilize periodic orbits without torsion �11� or,
more precisely, orbits with an odd number of real Floquet
multipliers greater than unity �12,13�. Although it has been
recently demonstrated that such a limitation does not gener-
ally apply to autonomous systems �14�, for nonautonomous
systems it remains a crucial factor.

To overcome the odd number limitation an idea of the
unstable controller has been proposed �15�. By including an
additional unstable mode into the control loop one artificially
enlarges the set of real multipliers greater than unity to an
even number. So far, this idea has been exploited solely for
autonomous systems. A corresponding analytical theory has
been developed close to a subcritical Hopf bifurcation �16�,
and the basins of attraction have been analyzed for different
forms of the control force �17�.

Due to complexity of the DFC theory, most investigations
are restricted to a linear stability analysis and no systematic
treatment of global properties, such as the size of basins of
attraction, is available in the literature. The importance of
such global features has been emphasized even in the origi-
nal paper �5�. It has been shown that limiting the size of the
control force by a simple cutoff increases the domain of at-
traction of the target state. A more pronounced analysis of
the global properties of the DFC has been performed only
recently �17–20�.

Here we address the concept of the unstable delayed feed-
back controller to nonautonomous chaotic systems from both
theoretical and experimental points of view. We develop an
approximate analytical approach for a linear stability analy-
sis of the controlled system and show that the basin of at-
traction of the stabilized target state can be enlarged via a
two-step control algorithm.

II. THEORETICAL CONSIDERATIONS

As a paradigmatic model of nonautonomous chaotic sys-
tems let us consider the forced double-well oscillator. If x
and y denote the dynamical variables of the oscillator, A is
the amplitude, and � is the frequency of the driving force,
then the equations of motion subjected to delayed feedback
control read

ẋ = y , �1a�

ẏ = �x − �x3 − �y + A cos��t� − k�S + W� , �1b�

Ẇ = �cW + kbS , �1c�

S�t� = x�t� − �1 − R�B�t − �� , �1d�

B�t� = x�t� + RB�t − �� , �1e�

where ��0 and ��0 are the parameters of the double-well
potential and ��0 is the damping parameter. Here we use
the extended version �6� of the DFC described by the vari-
ables S�t� and B�t� with the delay time �=2� /� equal to the
period of the driving force and the memory parameter
0	R	1. Note that the quantity B�t� can be excluded
from Eqs. �1d� and �1e� by writing S�t�=x�t�−x�t−��
+RS�t−��, but the latter equation contains two delayed vari-
ables x�t−�� and S�t−��. The form �1d� and �1e� with two
variables B�t� and S�t� is more convenient from experimental
point of view since it requires only one delay line for vari-
able B�t�. To overcome the odd number limitation an un-
stable mode governed by the variable W with the parameter
�c�0 is incorporated. The strength of the feedback force is
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defined by the parameters b and k. The �-periodic solutions
x�t�=xP�t�=xP�t−�� of the uncontrolled oscillator �1a� and
�1b� are also the solutions of the whole closed loop system
�1�, since they make zero the control perturbation. Indeed,
for such solutions Eqs. �1c�–�1e� are satisfied at B�t�
=xP�t� / �1−R�, S�t�=0, and W�t�=0.

For a certain choice of parameters, the free �k=0� oscil-
lator �1a� and �1b� exhibits chaotic behavior. An example of
the stroboscopic map for �=0.3, �=0.3, �=0.3, �=1.0, and
A=0.27 is shown in Fig. 1�a�. The symmetric UPO marked
by the circle is torsion free; its largest Floquet exponent is
�0�0.401 or Floquet multiplier 
0=e�0��12.423. The latter
value indicates that the orbit is highly unstable. This UPO is
the subject of testing our control algorithm. It is interesting
to note that the UPO is weakly nonlinear, although it is em-
bedded in the chaotic attractor for which the nonlinearity is
an essential factor. By a weakly nonlinear orbit we mean that
the influence of the nonlinear term �x3 on its solution is
small and it can be found by perturbation theory. In a zero
approximation ��=0� the solution for this UPO is

xP
�0��t� = − A Re�ei�t/��2 + � − i���� . �2�

This approximation is good if ��xP
�0��2��—i.e., when

�A2/���2 + ��2 + �2�2� � � . �3�

The set of parameters chosen above meets this inequality.

If the condition �3� is satisfied, the Floquet exponents of
the controlled UPO can be also obtained via a perturbation
theory. To present the theory in a general form we introduce
vector notation. Let z= �xyW�T be the vector of the dynamical
variables of the system �1� and zP= �xPyP0�T be the corre-
sponding UPO. Small deviations from the UPO, �z=z−zP,
may be decomposed into eigenfunctions according to the
Floquet theory, �z=e�tu�t� and u�t�=u�t−��, where � is the
Floquet exponent. The equation for the periodic function u�t�
is

�u + u̇ = Lu + �N�zP�t��u − kK���u . �4�

The matrices L and N,

L = �0 1 0

� − � 0

0 0 �c
�, N�zP�t�� = � 0 0 0

− 3xP
2 �t� 0 0

0 0 0
� ,

are, respectively, related to the linear and nonlinear terms of
the free system �1�, and K��� is the control matrix:

K��� = � 0 0 0

H��� 0 1

− bH��� 0 0
�, H��� =

1 − e−��

1 − e−��R
.

It depends on � due to the elimination of the delay terms.
We suppose that the target UPO is weakly nonlinear

and seek solutions of Eq. �4� in the form of a power series in
�: �=��0�+���1�+¯, u=u�0�+�u�1�+¯, and zP=zP

�0�+�zP
�1�

+¯. In the zero approximation, the right-hand side of
Eq. �4� is independent of time and thus u�0� is independent
of time as well. Therefore, the zero approximation gives
rise to a time-independent eigenvalue problem: ��0�u�0�

=Lu�0�−kK���0��u�0�. If we sought correction terms by the
standard perturbation theory, we would come to intricate ex-
pressions. We show, however, that the Floquet exponents of
the controlled UPO can be derived with accuracy O��� from
a relatively simple time-independent eigenvalue problem.
Let us average Eq. �4� over the period of the UPO:

�ū = Lū + �N�zP�t��u − kK���ū , �5�

where 
̄��1/��	0
�
�t�dt. One can easily verify that this

equation can be transformed with accuracy O��� to

�ū = Lū + �N�zP
�0��t��ū − kK���ū; �6�

i.e., if we apply the perturbation theory to Eqs. �5� and �6�
we obtain equivalent results up to terms O���. Equation �6�
represents a time-independent eigenvalue problem and leads
to a relatively simple quasipolynomial equation

det�L + �N�zP
�0��t�� − kK��� − I�� = 0, �7�

where I is the identity matrix.
The mechanism of stabilization is evident from the root

loci diagram of Eq. �7� shown in Fig. 1�b�. With the increase
of k, the positive exponent �0 of the uncontrolled UPO, and
the eigenvalue �c of the unstable mode W approach each
other on the real axes, then collide, pass to the complex
plane, and move to the stable region Re�	0. For

FIG. 1. �a� Stroboscopic map of the forced double-well oscilla-
tor for �=�=�=0.3, �=1, and A=0.27. The open circle marks the
target torsion-free UPO. The triangle shows the stable extraneous
periodic orbit generated in the first step of control at C=0 and
k=0.5. �b� Root loci of Eq. �7� for b=0.2, R=0.9, and �c=0.1 as k
varies from 0 to �. Crosses and black dots show the location of
roots for k=0 and k=�, respectively. �c� Real parts of the leading
Floquet exponents vs k. Solid lines are solutions of the quasipoly-
nomial, Eq. �7�, and dots show the solutions of the exact equation
�4�. �d� Enlarged essential part of �c�.
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k� �k0 ,k1���0.359,0.796�, the target orbit is stable. Figures
1�c� and 1�d� show that the solutions of the quasipolynomial
equation �7� are in good quantitative agreement with the val-
ues of Floquet exponents obtained numerically from exact
equation �4�. Note that neglecting the nonlinear term
�N�zP

�0��t�� in Eq. �7� leads only to qualitative but not quan-
titative agreement with the exact results. Good quantitative
results derived from quasipolynomial equation �7� confirm
the validity of our analytical approach.

Successful stabilization of the torsion-free UPO is shown
in Fig. 2. The results are obtained by numerical solution of
the nonlinear delay-differential equations �1�. When the sys-
tem approaches the target orbit the variable W tends to zero
and the control perturbation S+W vanishes. Note that the
linear stability of the target orbit does not guarantee success-
ful control for any initial conditions. To estimate the basin of
attraction we have calculated the statistics of the successful
outcomes at different values of k taken from the stability
interval �k0 ,k1�. The control has been activated from differ-
ent 1000 points randomly chosen on the chaotic attractor of
the free system. By way of illustration, one of numerical
experiments for k=0.38, 0.54, and 0.7 has shown, respec-
tively, 846, 994, and 992 successful outcomes.

Unfortunately, the current DFC theory cannot give gen-
eral advice as to how to enlarge the basin of attraction of the
stabilized UPO. To improve the global properties usually
various limiters are introduced that restrict the size of the
control force �5,15,16,19�. Recently it has been shown that
the basin of attraction can be enlarged by coupling control
forces through the phase of the signal �17�. Here we test an
alternative approach based on a two-step algorithm. In our
algorithm we do not attempt to reach the target state offhand.
In the first step we seek only a rough approach to the desired
state. For this aim we detune artificially some of the system
parameter. In the second step we return the correct value of
the parameter and reach exactly the target state.

The idea of a two-step algorithm is based on the observa-
tion that periodic orbits are robust �21�; their form and Flo-
quet multipliers vary slowly with smooth parameter changes.
An illustrative example is the period-doubling bifurcation.
The UPOs embedded in a chaotic attractor originating from
this bifurcation do not differ considerably from stable peri-
odic orbits, which were in the system below the critical value
of the chaotic instability. Thus, by switching a proper control
parameter in the first step, one can expect a conversion of
chaotic motion into a stable periodic motion close to the
target UPO �cf. �22��. We refer to this generated periodic
motion as an extraneous periodic orbit. In the second step we
need only to move the system from the extraneous orbit to
the target UPO. Such an algorithm may enlarge the basin of
attraction of the target orbit if the extraneous orbit has a
larger basin of attraction and if it lies in the basin of attrac-
tion of the target orbit. The feasibility of the two-step algo-
rithm is demonstrated in the Appendix by a simple example
of the logistic map.

Unfortunately, we do not have a general recommendation
for selecting the control parameter which allows us to gen-
erate a proper extraneus orbit in the first step of control. For
a given system the choice of such a parameter may depend
on the convenience of experimental implementation and can
be found by trial and error. For the double-well oscillator, we
have found that the basin of attraction of the target orbit can
be extended by a simple modification of Eq. �1e�:

B�t� = x�t� + CRB�t − �� , �8�

where C is an auxiliary parameter. When control is off
�k=0� we take C=0. In the first step, which lasts some time
interval tC, we switch on k�0 but hold C at zero. In the
second step, we switch on C=1. For tC=3�, the numerical
experiments have shown 100% success rate at any values of
k� �k0 ,k1�.

For this system, rigorous consideration of a mechanism of
the two-step algorithm is difficult, since one has to deal with
the global dynamics in an infinite-dimensional phase space.
However, a qualitative explanation of the mechanism is simi-
lar to that presented in the Appendix for the simple logistic
map. For C=0 and k�0, the control force does not vanish; it
generates an extraneous stable periodic orbit shown in Fig.
1�a� by the triangle. The bifurcation diagram presented in
Fig. 3 indicates that the extraneous orbit is linked to the
target state by a homotopy; i.e., the two orbits are “continu-
ously connected.” The generated orbit is close to the stabi-
lized target UPO �cf. Fig. 1�a�� and lies in its basin of attrac-
tion. Numerical analysis shows that the extraneous orbit has
better stability properties and larger basin of attraction than
those of the stabilized UPO. If tC�1/ 
�e
, where �e is the
leading exponent of the extraneous orbit, then in the first step
the phase points located in the larger basin approach the
extraneous orbit and in the second step they approach the
target orbit.

III. EXPERIMENTAL IMPLEMENTATION

To verify the feasibility of the unstable two-step DFC we
have constructed an electronic circuit shown in Fig. 4. The

FIG. 2. Successful control of the torsion-free UPO. The results
are obtained by numerical solution of Eqs. �1�. The control is acti-
vated at t=23.25�; i.e., the control gain k=0 for t	23.25� and
k=0.5 for t�23.25�. Other parameters are the same as in Fig. 1.
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OA1-based subcircuit is a double-well nonautonomous oscil-
lator driven by an external sinusoidal oscillator A sin��t�.
The LC tank resonance frequency has been set close to the
external driving frequency �. The oscillator is a simplified
version of the Young-Silva circuit �23�. The rest of the circuit
is a controller. Specifically, the OA2 stage is a buffer, the
OA4 stage is an inverter, and the OA7 inverting integrator
together with the OA8 inverter plays the role of an unstable
unit. The delay unit denoted as a two-terminal box in Fig. 3
is described in details elsewhere �24�. Actually it is a high-
order low-pass LCL-type filter. The transfer function of the
filter exhibits unity gain and constant delay �=3 ms in rather
wide frequency range, from dc to 3 kHz. Since the upper
band limit is higher than the fundamental frequency
�333 Hz� and its several higher harmonics of the nonlinear
oscillator, the filter can be considered as nearly ideal delay
line. Together with the OA5-based adder and the OA6 in-
verter in the local feedback loop the delay line composes an
extended delay subcircuit �the ratio R15/R14 is just the pa-
rameter R�. Eventually, the OA3-based adder via R3 com-

pletes the feedback loop of the controller. The initial posi-
tions of the switches K1 and K3 are in the closed state as
shown in Fig. 4 �this ensures k=0 and W=0�, while the
switch K2 initially is in the open state �holds C=0�. All the
switches are electronically operated; however, the service
circuits are not shown in Fig. 3 for simplicity.

The experimental results are presented in Fig. 5. The left-
hand side of the photograph is for the free-running system
without control �k=0 and W=0�. The segment of x�t� illus-
trates typically chaotic behavior of the nonautonomous
double-well oscillator. To release the control the switches K1
and K3 are turned off. At this moment the feedback signal is
applied to the oscillator �k�0� with the signal W�t� gener-
ated by the unstable OA7-OA8 subcircuit. However, in the
first step the switch K2 is still kept opened, thus holding
C=0. The second step �C=1� is activated by closing K2 after
a short time tC, typically of 3–10 ms, which corresponds to a
few periods of external force ��–3��. After some transients
of about 20 ms the double-well chaotic oscillator goes into a
stable periodic mode of oscillation, while the signal W�t� and
the total control signal k�S+W� vanish as expected.

We emphasize that the two-step control is very important
in experiments. When we applied one-step control—i.e.,
switched K1, K2, and K3 at the same moment—not all of the
attempts were successful. Neither the periodic orbit was sta-
bilized nor the system remained chaotic, but the output sig-
nals ran away from the attractor to the supply voltage ±15 V.
To characterize the performance of the controller quantita-
tively we built a common threshold circuit, generating a
single output pulse for each unsuccessful shot. The pulses
were registered by means of a standard counter. The control
had been applied to the system at a repetition rate of 5 Hz for
6 h. Thus, more than N=100 000 shots had been performed.
The rate of success slightly depended on the parameter R.
For example, the numbers of unsuccessful control events
were the following: n=55 118 and n=43 561 for R=0.8 and
R=0.9, respectively. Accordingly, the rate of success
�N−n� /N was from about 45% to 55% in the case of one-

FIG. 3. The maxima of the x variable of delay-differential equa-
tions �1� for k=0.5 when one changes the parameter C continuously
from 1 to 0. The initial value of xmax at C=1 marked by open circle
represents the target state, and the final value at C=0 marked by
triangle corresponds to the extraneous orbit. Other parameters are
the same as in Fig. 1.
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step control. In contrast, the two-step control ensured 100%
of success.

IV. CONCLUSION

We have presented theoretical and experimental evidence
that the unstable delayed feedback controller is a practical
and efficient tool to overcome the odd number limitation in
nonautonomous chaotic systems. Our analytical approach is
generic for any weakly nonlinear periodic orbits and can be
applied to a wider class of nonautonomous oscillators and
delayed feedback controllers. We have shown numerically
and experimentally that the two-step control algorithm im-
proves the global control performance. The generality of this
algorithm requires further investigation but even the present
results show that this idea is promising. We have presented
an experimental implementation of the unstable controller
for a chaotic system. Thus the concept of the unstable feed-
back loop works very well and widens the applicability of
the delayed feedback control techniques to nonautonomous
systems without torsion.

APPENDIX: TWO-STEP DELAYED FEEDBACK
CONTROL OF THE LOGISTIC MAP

The simplest dynamical toy models to which two-step de-
layed feedback control can be applied are time discrete maps.
They are easier to handle since the dimension of phase space
stays finite even if the control loop is included. Thus, visu-
alization of global properties remains feasible in such cases.
To illustrate the main idea of the two-step control algorithm
we restrict ourselves to the minimal model. We consider the
stabilization of a simple fixed point that does not require the
use of the unstable controller and apply the simple DFC
algorithm �not the extended version�.

To be specific, we demonstrate our approach for the lo-
gistic map xn+1= f�xn ;a�, where f�xn ;a�=axn�1−xn�. The

map has a period-1 orbit x*=1−1/a, which is unstable for
a�3. Our aim is to stabilize it via the two-step DFC algo-
rithm. We suppose that a is an accessible control parameter.
When increasing this parameter the system undergoes the
period-doubling bifurcation and reaches a chaotic regime.
The key idea of applying the two-step control to this system
is as follows. In the first step, we shift the parameter to the
interval 1	a	3, where the period-1 orbit is stable, and thus
generate an extraneous orbit. In the second step, we return
the original value of the parameter a and switch on the DFC
algorithm in order to stabilize the target orbit. In other words,
we adjust the control parameter a on each iteration by an
amount −�1−C��a+Ck�xn−xn−1� such that the controlled
system is described by a two-dimensional map

xn+1 = �a − �1 − C��a + Ck�xn − yn��xn�1 − xn� ,

yn+1 = xn. �A1�

For C=1 and k=0, we have the free logistic map. In the first
step, we take C=0, such that the parameter a is decreased by
an amount �a. As a result there appears an extraneous orbit
xe=1−1/ �a−�a� with Floquet multiplier 
e=2−a+�a. If
1	a−�a	3, the extraneous orbit is stable and the system
approaches it during the characteristic time �e=1/ 
ln

e

.
Thus the duration tC of the first step should satisfy tC��e. In
the second step, we return the original value of the parameter
a by switching on C=1 and activate the DFC control by
switching on k�0. The linear analysis of the system �A1� at
C=1 shows that the target orbit �x ,y�= �x* ,x*� is stable if the
control gain is in the interval

FIG. 5. Experimental snapshots of the output signal of the
double-well oscillator x�t�, the variable W�t�, and the control signal
k�S+W�. The horizontal and vertical scales are inscribed in the
photograph. The fine vertical line indicates the time instant when
the first step of control is activated �switches K1 and K3 are turned
off�. The second step of control �switch K2 is turned on� is activated
3 ms later.

FIG. 6. Basins of attraction of �a� extraneus orbit �C=0� and �b�
target orbit �C=1, k=2� for a=3.7 and �a=0.9. Extraneous and
target orbits are shown, respectively, by triangles and circles. In �c�
the dynamics of the two-step control is demonstrated. For n	100
the control is off �C=1, k=0�. The first step �C=0� lasts five
iterations in the time interval 100�n�104. The second step
�C=1, k=2� is activated for n�105.
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a − 3

2

a2

a − 1
	 k 	

a2

a − 1
. �A2�

In Fig. 6 we demonstrate the numerical results for the
parameters a=3.7 and �a=0.9. We see that the basin of at-
traction of the extraneous orbit occupies the whole unity
square 0	x	1, 0	y	1. The characteristic time of ap-
proaching this orbit is �e�4.48. The basin of attraction of
the target orbit is shown in Fig. 6�b�. It occupies only about
45% of the unity square. Thus the usual one-step DFC algo-

rithm is successful only for 45% of initial conditions taken
from the unity square. In contrast, the two-step control en-
sures 100% success for any initial conditions taken from the
unity square. This is provided by two features of the extra-
neous orbit: �i� the extraneous orbit lies in the basin of at-
traction of the target orbit and �ii� the basin of attraction of
the extraneous orbit occupies the whole unity square. In Fig.
6�c� we show the dynamics of the system controlled by the
two-step algorithm when the duration of the first step tC=5
only slightly exceeds the characteristic time �e.
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